92

OMDoc ontology


The OMDoc ontology models logical/functional structures of mathematical knowledge, such as formulæ, objects, statements (e.g. definitions, axioms, theorems, proofs), and theories.

Properties: has importrenders symbolhas definitionimports fromjustified by external statementhas declared typerefers tojustified byexemplifieshas typeproved byimported byHome theoryjustified byoccurs in definition ofrefuted bydepends onjustified byformality degreehas PropertyrefutesMeta Theorycorroborated byhas stephome theory ofhas stephas notation definitionoccurs intruth depends onwellformedness depends onoccurs in type ofTexthas direct partprovesverbalizesimportsassumeshas asserted typeconcludes withuses symbolhas occurrence of in typejustified byexemplified bycorroborateshas occurrence of in definitiondefineshas partformalizesjustified by subproof and justified by preceding step

Classes: Definition (general)DefinitionReferenceTypeFormelAssumptionSequent PartConstitutive StatementProofProof-local DefinitionProof (general)AssertionSymbolPostulateDerivation StepRuleConjectureDeclared TypeAlternative DefinitionSymbol (general)Document UnitCitationPropertyLemmaAssumptionFalse ConjectureCorollaryNotation DefinitionStatementConclusionAxiomDocumentAxiom (general)ConclusionGapFormality DegreeHypothesisObligationNon-constitutive StatementTheoremInformal Knowledge ItemStatementStatementProof StepTheoryProof TextNested ProofText FragmentFormal Knowledge ItemProof-local SymbolImportProof-local StatementPropositionAsserted TypeExample and Mathematical Knowledge Item

Examples

No examples yet, add one.

History

Created: 2010-08-12T01:02:30Z
Modified: 2010-08-12T01:02:30Z